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Tables and graphs are given of the inverse Laplace transform of a function appearing 
frequently in the operational solution of pulse propagation problems arising in visco- 
elasticity. The method of calculation is based on the inversion of elements of the Pad6 
table of the function. This is made practical by use of a recursive method of construct- 
ing the Pade table due to the author. 

I. INTR~DUCTI~N 

As early as 1931 in a paper entitled “Damping of Bodily Seismic Waves” 
Jeffreys [l] is led to consider the Laplace transform inversion of the function 

TO4 = (l/~) exp{-~xlcU + vY2>. (1) 

Here p denotes the Laplace transform operator, and f(p) is related to its inverse 
f(t) by the usual equation 

f(p) = 1,” @‘“f(t) dt, (2) 

t denoting the time. Here in the usual equation of transmission of distortional 
waves in one dimension 

a+.qat2 = (p/p)(a22qax2), (3) 

where Y is the (small, transverse) displacement, p is a Lame elastic constant, p is 
the density and x denotes distance, Jeffreys allows for imperfection of elasticity of 
the nature of elastic afterworking or firmoviscosity by replacing p by 

where r is a constant measured as a time. Writing c2 for p/p Equation (3) then 
becomes 

i32V 
-= 
at2 

c2 
( 

l+Ta !2 
1 at ax2 * (5) 
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For a medium originally undisturbed we have, in operational form, the subsidary 
equation 

3% P2 - 
== c2(1 + ‘PI v (6) 

having the solution 

G = i$ exp{ -px/c(l + up)““>, (7) 

on the assumption that the operational solution does not tend to infinity as 
x -+ co. ij,, is the (transformed) displacement at x = 0. If we assume that 
v,(t) = H(t) (the Heaviside unit function) so that v0 is zero up to time 0 and unity 
afterwards, we have 

V = (l/p) exp{-px/c(l + up)““}. (8) 

This operational solution is of the form (1) which may therefore be regarded as 
representing the propagation of a transverse displacement in a bar placed along 
the x-axis caused by a unit step function displacement at time t = 0 at the end 
x = 0. 

Essentially the same function (1) is obtained by Collins [2] in the problem of 
impulsive stress propagation in a Voigt solid. Collins uses a method of inversion 
involving parabolic cylinder functions of negative integral order, and is faced with 
convergence difficulties, since his expansion only converges well for large p. 

Later Clark and Rupert [3] obtained various integral representations for the 
inverse of(l), and Jaramillo and Colvin [4] solve a similar problem using again the 
parabolic cylinder functions as suggested by Collins, and again only obtain accurate 
results for small t. 

All these variations on the inversion of (1) suffer from considerable analytic 
complication and various types of convergence difficulties. In the present paper 
simple tables and graphs are presented for the inversion of (1). These have been 
obtained by the use of a rational approximation technique developed by the author 
[S]. In examining these solutions it is helpful to bear in mind the physical problem 
suggested by Jeffreys which is described above in Eqs. (3)-(8). 

II. THEORY AND COMPUTATIONS 

As a first step in the treatment of (1) we replace the two parameters x/c and T 
by a single parameter 0 in the following way. Writing x/c = a (1) takes the form 

f(p) = 4la~) exp{--aplU + ~a~)*/~1 (9) 
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where we have written u = T/a = CT/X, a dimensionless parameter. We see now 
that it is sufficient to invert 

i?(p) = U/P) exp{-p/U + UPYT (10) 

and then by the similarity rule for Laplace transforms the inversef(t) off(p) is 

f(t) = gW> = d44. (11) 

For the rest of this paper we consider the inversion of (10) for various values of 
o on the understanding that the time variable t in the answer is really to be replaced 
by the dimensionless et/x. 

Two limiting cases immediately present themselves. If we take u = 0 we have 
ordinary elasticity in the Jeffreys problem, and the inversion of (10) is immediate, 
yielding 

go) = ff(f - 11, (14 

which we interpret as 

f(t) = fmw - 1); (13) 

the unit step arrives at time x/c corresponding to the velocity c. Thus for small u 
we expect g(t) to approach the function H(t - 1). We also have a useful analytical 
approximation when u is large, using the fact that an approximation to g(p) valid 
for large p yields on inversion an approximation to g(t) valid for small t.l If p is 
sufficiently large we have 

E(P) + gdp> = UP ew-WY2~ (14) 

neglecting 1 compared with up in the square root. The exact inverse of gl(p) is 

gr(t) = 1 - erf{$(ut)-1’2} = erfc[-$(ut)-112], (15) 

where erf denotes the error function defined according to 

erf z = (2/7~‘/~) 11 e6 du. (16) 

Thus we have at the outset two limiting forms for our inverse as o -+ 0 and as 
u + co. The method of numerical inversion of g(p) adopted in this paper is based 
on the Pad6 table for the Taylor series expansion of pg(p) about the point p = 0. 
The work is facilitated by use of a recursive method developed by the author [5] 
for computation of the Pad6 table. 

1 The intention here is that if CT is large, ‘up > p and so for p large we can neglect 1 compared 
to up in Eq. (10). 
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The next step, then, is the Maclaurin expansion of pg(p). By elementary methods 
we find the formal expansion 

(17) 

where 

cg = I, Cl = -1, c2 = (1 + 4/2, 

and 

Ck=(-l)k n I l+ “-1(k-r+2)(k-r+4)*..(k+r-2) 
(k - r - l)! r! 

k > 2. (18) 

Of course if (T = 0, pg(p) = e-p giving Eq. (12) on inversion. 
For various values of u the Pad4 table was constructed, and the diagonal elements 

divided by p and inverted, the whole process being carried out automatically in the 
computer. The procedure was to invert successive diagonal elements and establish 
the accuracy by comparing results. For example in Table I below a few of the results 
for the case u = 0.1 are given. The elements in question are those on the leading 
diagonal of the Pad& table, and they represent alternate convergents of the cor- 
responding continued fraction to the power series (17). 

TABLE I 

Inversion of successive diagonal elements (divided by p) for the case D = 0.18 

t N=2 N=3 N=4 N=5 N=6 N=7 N=8 

0 -0.8182 0.5437 -0.2887 0.1887 -0.0356 0.0067 -0.ooo4 
0.5 0.2675 -0.0284 -0.0271 0.0186 0.0286 0.0277 0.0274 
1.0 0.7049 0.6094 0.5666 0.5516 0.5480 0.5475 0.5475 
1.5 0.8811 0.9070 0.9232 0.9280 0.9289 0.9290 0.9290 
2.0 0.9521 0.9873 0.9945 0.9945 0.9944 0.9944 0.9944 
2.5 0.9807 1.0008 1.0002 0.9997 0.9997 0.9997 0.9997 

& N is the position of the element on the leading diagonal of the Pade table. 

It is evident that as we proceed to the right in this table we have rapid convergence 
to a fixed inverse, except for small values of I for which, however, we will see that 
sufficient accuracy is given by gl(t) (Eq. (15)). 

In the following two tables the “converged” values are tabulated for t = 0 (0.1) 
2.6 and u = 0 (0.1) 0.9, 1.1, 2.0. Approximate values were also obtained for 
u = .03,05, 5.0 and 10.0 but are not tabulated here. They are, however, represented 
graphically in the figures. For the smaller values oft for which four-figure accuracy 
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has not been achieved by the inversion of the rational function standing in the 
eight position on the Padt table diagonal (divided by p) the results are given in 
brackets and derive from this eighth position. Of course the exact value for t = 0 
is always zero. 

TABLE II 

“Converged” values of g(t) for 0 = O.l(O.1) 0.5 

t 0 = 0.1 0 = 0.2 0 = 0.3 0 = 0.4 D = 0.5 

0 (-0.ooo4) (-0.0006) (0.0012) (- -0.0022) (-0.0038) 
0.1 (-0.0001) (-0.0001) (0.0002) 0.0001 0.0013 
0.2 @.~) 0.0009 (0.0065) 0.0181 0.0340 
0.3 w@w 0.0113 0.0365 0.0678 0.0998 
0.4 0.0055 0.0437 0.0927 0.1389 0.1798 
0.5 0.0274 0.1022 0.1676 0.2200 0.2627 
0.6 0.0800 0.1828 0.2526 0.3036 0.3431 
0.7 0.1685 0.2773 0.3409 0.3850 0.4186 
0.8 0.2860 0.3774 0.4272 0.4616 0.4879 
0.9 0.4175 0.4757 0.5085 0.5320 0.5507 
1.0 0.5475 0.5674 0.5828 0.5957 0.6071 
1.1 0.6638 0.6493 0.6490 0.6525 0.6574 

1.2 0.7602 0.7201 0.7072 0.7027 0.7020 
1.3 0.8351 0.7798 0.7574 0.7467 0.7414 
1.4 0.8902 0.8288 0.8003 0.7849 0.7760 
1.5 0.9290 0.8685 0.8366 0.8179 0.8063 
1.6 0.9553 0.8999 0.8669 0.8463 0.8328 
1.7 0.9725 0.9245 0.8922 0.8707 0.8559 

1.8 0.9835 0.9436 0.9130 0.8914 0.8759 
1.9 0.9903 0.9581 0.9301 0.9090 0.8933 
2.0 0.9944 0.9691 0.9440 0.9239 0.9084 
2.1 0.9968 0.9774 0.9553 0.9365 0.9214 
2.2 0.9982 0.9836 0.9644 0.9471 0.9327 
2.3 0.9990 0.9881 0.9718 0.9560 0.9424 
2.4 0.9995 0.9914 0.9777 0.9635 0.9507 

2.5 0.9997 0.9939 0.9824 0.9697 0.9579 
2.6 0.9998 0.9956 0.9861 0.9749 0.9641 

It may be remarked that the value u = 1 is omitted from Table III. The reason 
is that for this value of u the Taylor series (15) ceases to be normal and does not 
have a normal Padt table, and our method of computation [5] is not valid in this 
case. For the definition of normality of a power series and its PadC table the 
reader is referred to Perron [6]. 
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t 

0 (-0.0122) (0.0148) (0.0073) (0.0128) (0.0165) (-0.0690) 
0.1 (0.0033) (0.0065) (0.0142) 0.0206 (0.0360) 0.1334 
0.2 (0.0523) 0.0730 0.0916 0.1113 0.1482 0.2780 
0.3 0.1307 0.1597 0.1856 0.2101 0.2538 0.3841 
0.4 0.2156 0.2470 0.2749 0.2997 0.3425 0.4641 
0.5 0.2983 0.3284 0.3548 0.3778 0.4167 0.5263 
0.6 0.3753 0.4021 0.4255 0.4457 0.4796 0.5760 
0.7 0.4456 0.4683 0.4878 0.5049 0.5335 0.6167 
0.8 0.5092 0.5273 0.5429 0.5568 0.5804 0.6509 
0.9 0.5663 0.5799 0.5918 0.6026 0.6214 0.6801 
1.0 0.6173 0.6267 0.6353 0.6432 0.6576 0.7056 
1.1 0.6628 0.6684 0.6739 0.6793 0.6897 0.7280 
1.2 0.7032 0.7055 0.7083 0.7115 0.7184 0.7480 
1.3 0.7391 0.7385 0.7391 0.7403 0.7440 0.7659 
1.4 0.7708 0.7679 0.7665 0.7661 0.7671 0.7821 
1.5 0.7988 0.7940 0.7910 0.7892 0.7879 0.7969 
1.6 0.8236 0.8173 0.8129 0.8099 0.8067 0.8103 
1.7 0.8454 0.8379 0.8325 0.8285 0.8237 0.8226 
1.8 0.8647 0.8563 0.8500 0.8453 0.8391 0.8340 
1.9 0.8816 0.8726 0.8657 0.8604 0.8530 0.8444 
2.0 0.8964 0.8871 0.8798 0.8740 0.8657 0.8541 
2.1 0.9095 0.9000 0.8924 0.8862 0.8772 0.8630 
2.2 0.9209 0.9114 0.9036 0.8973 0.8877 0.8713 
2.3 0.9310 0.9215 0.9137 0.9072 0.8973 0.8790 
2.4 0.9398 0.9305 0.9227 0.9162 0.9060 0.8862 
2.5 0.9475 0.9385 0.9308 0.9243 0.9140 0.8928 
2.6 0.9542 0.9456 0.9381 0.9316 0.9213 0.8991 

TABLE III 

“Converged” values of g(t) for D = O&0.1) 0.9, 1.1, 2.0 

D = 0.6 (I = 0.7 fJ = 0.8 0 = 0.9 0 = 1.1 l7 = 2.0 

Figure 1 shows a plot of g(t) for various values of CT, and for comparison the 
step function H(t - 1) corresponding to the case CT = 0 is also shown. 

In order to show the manner in which g(t) approaches gr(t) as u increases, the 
results have been plotted as functions of at in Fig. 2, where also gl(t) is plotted. 
It was convenient to use a logarithmic scale in the at direction in order to include 
the full range of at for which results were calculated, and yet to show clearly the 
shape of the initial part of the gl(t) curve. It is evident in Fig. 2 how the shapes 
of the curves vary continuously from that of @at) for u = 0 to 

gl(t) = 1 - erf{-$(ut)-l/z} 

as u -+ co. Also we see to what extent gl(t) gives a good approximation to g(t) 
for small values of 2. 
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FIG. 1. The inverse g(t) of g(p) [see Eq. (lo)] is plotted for various values of CT. The step 
function H(t - 1) corresponds to the case 0 = 0. 
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FIG. 2. The inverse g(t) of g(p) [see Eq. (lo)] is plotted against ot for various values of (T, 
using a logarithmic ot scale. For comparison the function g(t) Eq. (15)] is also shown, and 
corresponds to D + to. The unit function H(d) corresponds to the case (I + 0. 

III. CONCLUSION 

Numerical Laplace transform inversion has been achieved for an important 
problem in viscoelastic pulse propagation, and the results shown in tabular form 
and graphically. 
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